De novo assembly of complex genomes Michael Schatz

Oct 3, 2013 Beyond the Genome

@mike_schatz

Assembling a Genome

2. Construct assembly graph from overlapping reads

3. Simplify assembly graph

Assembly Complexity

Assembly Complexity

Ingredients for a good assembly

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) *Genome Biology*. 12:243

Hybrid Sequencing

Illumina Sequencing by Synthesis

High throughput (60Gbp/day) High accuracy (~99%) Short reads (~100bp)

Pacific Biosciences

SMRT Sequencing

Lower throughput (IGbp/day) Lower accuracy (~85%) Long reads (5kbp+)

SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

SMRT Sequencing Data

Match	83.7%
Insertions	11.5%
Deletions	3.4%
Mismatch	1.4%

TTGTAAGCAGTTGAAAACTATGTGT <mark>G</mark> GATTTAG <mark>A</mark> ATAAAGAACATG <mark>A</mark> AAG
ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG
CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA
-AGGAGG <mark>GGAAAGGGGGG</mark> GAATATCT-ATAAAAGATTACAAATTAGA-TGA
ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT
TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
ATCCAGT <mark>G</mark> GAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG

Sample of 100k reads aligned with BLASR requiring >100bp alignment

PacBio Error Correction: HGAP

- With 50-100x of Pacbio coverage, virtually all of the errors can be eliminated
 - Works well for Microbial genomes: single contig per chromosome routinely achieved
 - Difficult to scale up for use with eukaryotic genomes

Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data Chin, CS et al. (2013) Nature Methods. 10: 563-569

Hybrid Error Correction: PacBioToCA http://wgs-assembler.sf.net

- I. Correction Pipeline
 - I. Map short reads to long reads
 - 2. Trim long reads at coverage gaps
 - 3. Compute consensus for each long read

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) *Nature Biotechnology*. doi:10.1038/nbt.2280

Improved Gene Reconstruction

FOXP2 assembled in a single contig in the PacBio parrot assembly

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) *Nature Biotechnology*. doi:10.1038/nbt.2280

Population structure in Oryza sativa

3 varieties selected for de novo sequencing

IR64

High quality BAC-by-BAC reference

- ~370 Mbp genome in 12 chromosomes
- About 40% repeats:
 - Many 4-8kbp repeats
 - 300kbp max high identity repeat (99.99%)
- Useful model for other cereal genomes

Nipponbare

Preliminary Rice Assemblies

Assembly	Contig NG50
HiSeq Fragments 50x 2x100bp @ 180	3,925
MiSeq Fragments 23x 459bp 8x 2x251bp @ 450	6,332
"ALLPATHS-recipe" 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	18,248
PBeCR Reads 19x @ 3500 ** MiSeq for correction	50,995

In collaboration with McCombie & Ware labs @ CSHL

Assembly Coverage Model

Simulate PacBio-like reads to predict how the assembly will improve as we add additional coverage

Only 8x coverage is needed to sequence every base in the genome, but 40x improves the chances repeats will be spanned by the longest reads

Assembly complexity of long read sequencing

Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz MC et al. (2013) In preparation

Enhanced PacBio Error Correction

PacBioToCA fails in complex regions

- I. Simple Repeats Kmer Frequency Too High to Seed Overlaps
- 2. Error Dense Regions Difficult to compute overlaps with many errors
- 3. Extreme GC Lacks Illumina Coverage

Error Correction with pre-assembled Illumina reads

https://github.com/jgurtowski/pbtools

Short Reads -> Assemble Unitigs -> Align & Select - > Error Correct

Unitigs:

High quality contigs formed from unambiguous, unique overlaps of reads Each read is placed into a single unitig

Can Help us overcome:

- **1.** Simple Repeats Kmer Frequency Too High to Seed Overlaps
- 2. Error Dense Regions Difficult to compute overlaps with many errors

Preliminary Rice Assemblies

Assembly	Contig NG50
HiSeq Fragments 50x 2x100bp @ 180	3,925
MiSeq Fragments 23x 459bp 8x 2x251bp @ 450	6,332
"ALLPATHS-recipe" 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	18,248
PBeCR Reads 19x @ 3500 ** MiSeq for correction	50,995
Enchanced PBeCR 19x @ 3500 ** MiSeq for correction	155,695

In collaboration with McCombie & Ware labs @ CSHL

P5-C3 Chemistry Read Lengths

De novo assembly of Arabidopsis

http://blog.pacificbiosciences.com/2013/08/new-data-release-arabidopsis-assembly.html

A. thaliana Ler-0 sequenced at PacBio

- Sequenced using the latest P4 enzyme and C2 chemistry
- Size selection using an 8 Kb to 50 Kb elution window on a BluePippin[™] device from Sage Science
- Total coverage >100x

Genome size:	124.6 Mb
GC content:	33.92%
Raw data:	II Gb
Assembly coverage:	15x over 9kbp

Sum of Contig Lengths:	149.5Mb	
Number of Contigs:	1788	
Max Contig Length:	12.4 Mb	
N50 Contig Length:	8.4 Mb	

Assembly Complexity of Long Reads

Summary

- Hybrid assembly let us combine the best characteristics of 2nd and 3rd gen sequencing
 - Better repeat resolution and error correction by pre-assembling Illumina reads into unitigs
- Long reads and good coverage are the keys to a high quality de novo assembly
 - Single contig de novo assemblies of entire microbial chromosomes are now routine
 - Single contig de novo assemblies of entire plant and animal chromosomes on the horizon
- We are starting to apply these technologies to discover significant biology that is otherwise impossible to measure
 - Expect to see results in smaller genomes scale up over the next few years

Acknowledgements

Schatz Lab Giuseppe Narzisi Shoshana Marcus James Gurtowski Srividya Ramakrishnan Hayan Lee Rob Aboukhalil Mitch Bekritsky Charles Underwood Tyler Gavin **Alejandro Wences Greg Vurture Eric Biggers** Aspyn Palatnick

<u>CSHL</u> Hannon Lab Gingeras Lab Iossifov Lab Levy Lab Lippman Lab Lyon Lab Martienssen Lab McCombie Lab Ware Lab Wigler Lab

IT Department

<u>NBACC</u> Adam Phillippy Sergey Koren SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

National Human Genome Research Institute

Thank You! http://schatzlab.cshl.edu @mike_schatz

